关于毕达哥拉斯学派的数学成就认识
摘要:公元前6世纪——公元前3世纪是希腊数学古典时期,古希腊出现了许多数学学派,毕达哥拉斯学派便是其中一个非常重要的学派,他们的哲学和数学思想对希腊数学的发展起到了重要作用。该学派通过对自然数的研究定义了许多概念,诸如完全数、亲和数、三角形数、四边形数等,他们还应用勾股定理导致了第一个无理数√2的出现。人教版小学数学教材在五年级上册和下册分别介绍了两个与该学派有关的数学史知识,因此有必要让我们进一步了解该学派及其数学成就。
关键字:毕达哥拉斯学派;完全数;勾股定理;第一次数学危机
人民教育出版社出版的义务教育教科书数学在五年级下册第8页“以你知道吗?”的形式介绍了完全数。五年级上册第114页介绍了“勾股定理的证明”以上两部分内容都与数学史上著名的古希腊数学学派———毕达哥拉斯学派的数学成就密切相关[1]。为了让我们能够更详细地了解毕达哥拉斯学派及其数学成就,以便教学时对这些内容进行更好的渗透。以下将对毕达哥拉斯学派及其数学成就进行整理和介绍。
1.毕达哥拉斯学派简介
毕达哥拉斯(约公元前580到500期间—-—-前497)是古希腊哲学家、数学家、天文学家和音乐理论家,出生于爱琴海中的萨摩斯岛。毕达哥拉斯据传曾就学于爱奥尼亚学派创始人、“希腊科学之父”——泰勒斯,他曾长期游学于埃及、巴比伦、波斯等地学习数学和几何,接受了东方文化的影响,继而拾起学术事业的火炬,在意大利南部的希腊居留地克罗顿成立自己的学派——毕达哥拉斯学派。
毕达哥拉斯派学者没有书面著作,现存的知识我们是通过柏拉图、希罗多德的著作知悉它们的,而且毕达哥拉斯与他的学生共同进行知识的研究,因此,很难肯定一些发现该归功于毕达哥拉斯本人还是他的门人[2]。
2.毕达哥拉斯学派的数学成就
毕达哥拉斯学派在数学上的贡献主要有:
(1)给出了亲和数、完全数的概念。
(2)定义了三角形数、正方形数等。
(3)发现了勾股定理。
(4)根据勾股定理导致了无理量的发现。
下面我将选择我们比较熟悉的完全数和勾股定理进行介绍。
3. 完全数
如果一个数恰好等于它的因子之和,则称该数为“完全数”。各个小于它的约数(真约数,列出某数的约数,去掉该数本身,剩下的就是它的真约数)的和等于它本身的自然数叫做完全数,又称完美数或完备数。
例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28。第三个完全数是496,有约数1、2、4、8、16、31、62、124、248、496,除去其本身496外,其余9个数相加,1+2+4+8+16+31+62+124+248=496。后面的完全数还有8128、33550336等等。
公元前6世纪,毕达哥拉斯是最早研究完全数的人,他已经验证了6和28是完全数,而且完全数也是毕达哥拉斯学派“万物皆数”思想的一部分,毕达哥拉斯曾说:”6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身。”
4. 勾股定理
该定理即“任意直角三角形两条直角边的平方和等于斜边的平方”在中国叫“商高定理”或“勾股定理”,最早见于《周髀算经》中的记载,西方文献中此定理一直以毕达哥拉斯命名。
当发现无论什么样的直角三角形,其三条边的长度之间都有这种简明、统一的数量关系时,毕达哥拉斯学派是非常兴奋的。据传毕达哥拉斯学派为了庆祝这条定理的发现,曾宰牛祭神(有传说宰了一百头牛),但后来也有人指出宰牛之说与毕达哥拉斯学派奉行的素食主义相违,并且迄今并没有毕达哥拉斯发现和证明了勾股定理的直接证据[3]。尽管如此,人们仍然对毕达哥拉斯证明勾股定理的方法给出了种种猜测,其中最著名的是普鲁塔克推测的面积剖分法。设直角三角形的两直角边与斜边分别为a,b,c,以此直角三角形为基础作出两个边长为a+b的正方形,由于这两个正方形内各含有四个与原来的直角三角形全等的三角形,除去这四个三角形后,两个图形剩余部分的面积应该相等。而第一个图形中剩余部分的面积是以斜边c为边的正方形面积,第二个图形中剩余部分的面积是以直角边a和b为边的两个正方形面积之和,于是得到c²=a²+b²,这就是毕达哥拉斯定理,也即勾股定理。
5. 第一次数学危机
毕达哥拉斯学派的信条为“万物皆数”,即一切数都可以表示为整数与整数之比—-—分数。简单而言,他们认识的只有有理数。这在几何上可以理解为对于任何两条给定的线段,总能找到第三条线段作为单位线段,将所给两条线断划分为整数段,他们称这样的两条线段为“可公度量”,即有公共的度量单位。
第一次数学危机表明几何学的某些真理与算术无关,几何量不能完全由整数及其比表示。反之数却可以由几何量表示出来,整数的尊崇地位受到挑战,古希腊的数学观点受到极大的冲击,于是,几何学开始在希腊数学中占有特殊地位。同时反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。这是数学思想上的一次革命,是第一次数学危机的自然产物。但是第一次数学危机客观上使得希腊数学在代数方面的发展与其几何学的成就很不相称。
约在公元前370年,这个矛盾被柏拉图学派的欧多克索斯通过给比例下新定义的方法解决了,他处理不可公度的办法被欧几里得《几何原本》第二卷收录,并且和戴德金1872年给出的无理数的现代解释基本一致[4]。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
结语
尽管毕达哥拉斯学派对第一次数学危机采取了回避的态度,但是这并不影响他们在数学史上对数学发展所作出的巨大贡献,后来数学的发展尤其是微积分的发展进一步证明毕达哥拉斯学派的名言“万物皆数”是如此贴切。我们可以从毕达哥拉斯学派的成就中认识到小学数学对于数学文化和数学素养方面的涉猎,可以帮助我们在今后的教学中,逐步渗透数学文化知识,培养小学生对于数学这一学科的兴趣。
参考文献:
[1] 江献.小学数学教材中的数学史——毕达哥拉斯学派[J].考试周刊,2016(A0):19-20.
[2] 金红莲.毕达哥拉斯与其学派思想[J].科教文汇(中旬刊),2009(08):244+273.
[3] 熊小燕.勾股定理趣谈[J].中学生数理化(八年级数学)(配合人教社教材),2015(Z1):65-66.
[4] 贾芸芸.第一次数学危机[J].初中生世界,2014(46):74-75.
http://www.dxsbao.com/art/426395.html 点此复制本页地址